

ПЕРСПЕКТИВЫ ЭНЕРГОСБЕРЕЖЕНИЯ С ЧИЛЛЕРОМ ENERGOLUX С ПОЛНОЙ РЕКУПЕРАЦИЕЙ ТЕПЛА

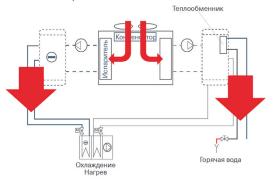
ерспективы энергосбережения с чиллером Energolux с полной рекуперацией тепла

Модель Energolux SCAW-M 66 ZHR с полной теплоутилизацией с реверсивным тепловым насосом. Такие агрегаты интересны в применении на объектах, где требуется охлаждение, нагрев для воздушного отопления и одновременно получения горячей воды для бытового назначения. Агрегат позволяет максимально гибко решать вопросы кондиционирования, воздушного отопления и одновременно получать горячую воду, предназначенную для бытовых нужд или дополнительного нагрева. В сущности, эта модель объединяет в себе два агрегата: одного, работающего на охлаждение и другого в режиме теплового насоса. В агрегате применяются оптимизированный фреоновый контур и высокоэффективные компо-

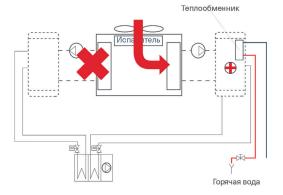
ненты: теплоутилизатор типа труба в трубе и кожухотрубные теплообменники испарителя с спиральным типом дефлектора для увеличения теплопередачи без увеличения потерь. Все это позволило получить чрезвычайно высокую энергоэффективность достигающей 8,24 при одновременной работе в режиме охлаждения (теплового насоса) + теплоутилизации; а именно на один киловатт потребляемой электрической мощности агрегат вырабатывает одновременно в сумме 8,2 кВт мощностей холода и тепловой энергии. Исходя

из этого видится наиболее оптимальное применение блока, например в мини отелях, фитнес залах для системы кондиционирования и нагрева (бассейна или получения горячей воды для душевых и бытового применения). Фактически блок может заменять собой бойлер с возможностью нагрева воды от +15 °C до +55 °C. Применение чиллера тем более интересно там, где отсутствует газофикация.

Агрегат имеет пять режимов работы:


 Охлаждение. Теловой насос. Режимы производства захоложенной воды для системы кондиционирования или горячей воды (режим теплового насоса) для воздушного обогрева, которые в основном применяются в системах кондиционирования воздуха.

Energolux



- 2) Охлаждение + рекуперация. В тех случаях, когда требуется одновременно кондиционирование и горячая вода, для бытового назначения
- Режим теплового насоса + теплоутилизация. Этот режим применяется осенью, зимой, когда одновременно необходимо воздушное отопление (тепловой насос) и получение горячей воды от теплоутилизации. При этом суммарный СОР будет выше 7,5.

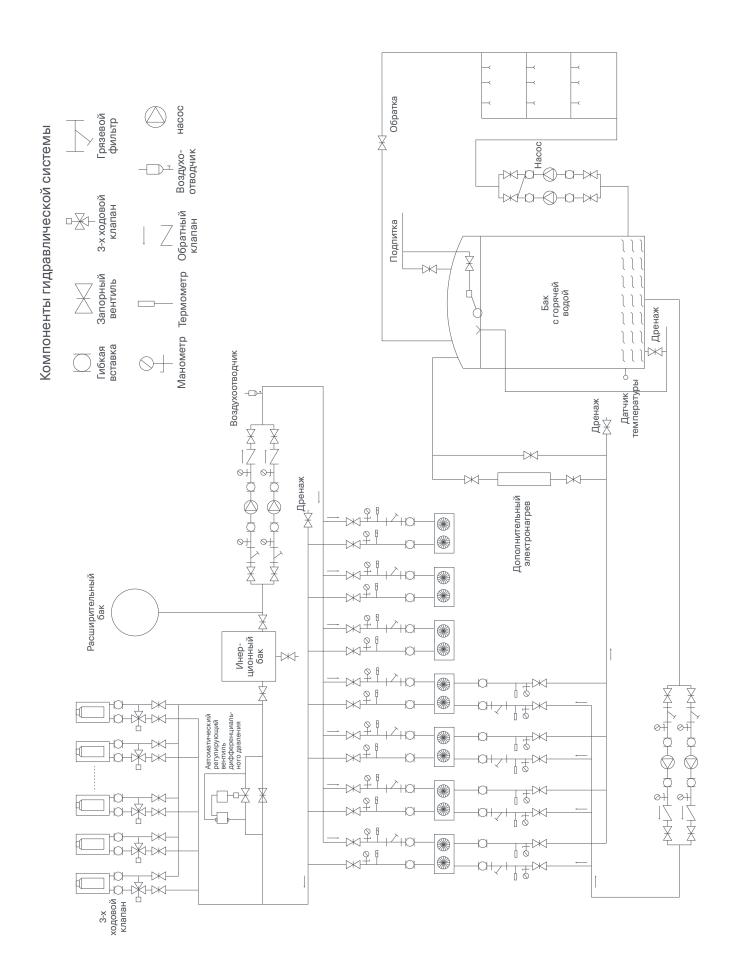
4) Только рекуперация. Когда требуется получение только горячей воды бытового назначения без применения режима охлаждения и теплового насоса для кондиционирования, то применяется только режим рекуперации. Фактически агрегат работает как классический воздушный тепловой насос через теплоутилизатор.

В режимах охлаждение (тепловой насос) + рекуперация приоритетным является режим нагрева воды через теплоутилизатор. Когда температура горячей воды в накопительном баке достигает заданного значения, то «на время простоя» агрегат автоматически переключается в режим в

воздушного охлаждения (нагрева). Но пользователь может поменять приоритеты. Режимы нагрева от -15 °C до +48 °C наружной температуры, что значительно превышает температурные диапазоны других производителей.

Ниже приведены таблицы с поправочными коэффициентами для расчета холодопроизводительности и температур на выходе теплоутилизатора в зависимости от наружного воздуха. Желтым обозначены стандартные условия.

Режим ГВС. Нагрев воды от +15 °С до +55 °С емкостью 1,63 м^3 за один час при расходе 13.1 м^3 /час.


Так для температуры наружного воздуха -10 °C и расходе 13,1 м³/час: 1) холодопроизводительность составит Q=70 кВт X 0,62=43,5 кВт. 2) При разнице температур (Δ T) между входом/выходом 30 °C и Твх=25 °C, то нагрев воды будет до температуры T=55 °C х 0,79= 43,5 °C. Если это недостаточно, то можно снизить расход воды для получения большего Δ T. Или предусмотреть установку электрического нагревателя как предусмотрено на схеме на критические значения температур.

SCAW-M 66 ZHR Поправочные коэффициенты для теплоутилизатора

Наружная температура, °С	Температура воды на входе, °C	Температура воды на выходе, °C	Теплопроизводи- тельность, кВт.		
-10	9	45	0,62		
-7	9	47	0,649		
2	9	50	0,767		
7	9	51	0,868		
20	15	55	1		
27	15	55	1,159		
35	29	55	1,249		
43	29	55	1,305		
48	34	55	1,293		

Наружная температура (°C)											
Разница температуры вход/выход, °С	-10	-7	2	7	20	27	35	43	48		
30	0,757	0,897	1,01	1,141	1,333	1,532	1,598	1,683	1,651		
35	0,649	0,769	0,865	0,978	1,343	1,313	1,369	1,443	1,416		
40	0,568	0,673	0,757	0,856	1	1,149	1,198	1,262	1,239		

